Managing Fugitive Dust On Roads and Airports

Billy Connor Alaska Tribal Technical Assistance Program University of Alaska Fairbanks

Road Map Part 1

- Understanding fugitive
 dust
- Impacts of Dust
- Methods to manage dust
- Road Preparation
- Selecting and Applying Palliatives
- Performance Testing

Unpaved Roads in the US

- 1.3 million miles of unpaved road in US
- 97% located in rural areas
- Source of 10.5 million tons particulate matter <10µm (PM10)

An Example of the Magnitude of the Problem

- Consider: -> 2-mile stretch of unpaved road,
- -> 20 vehicles/day,
- -> average speed= 30 mph.
- Result: 10,920 lbs of dust (PM10) per month
- (Roberts et al., 1975)



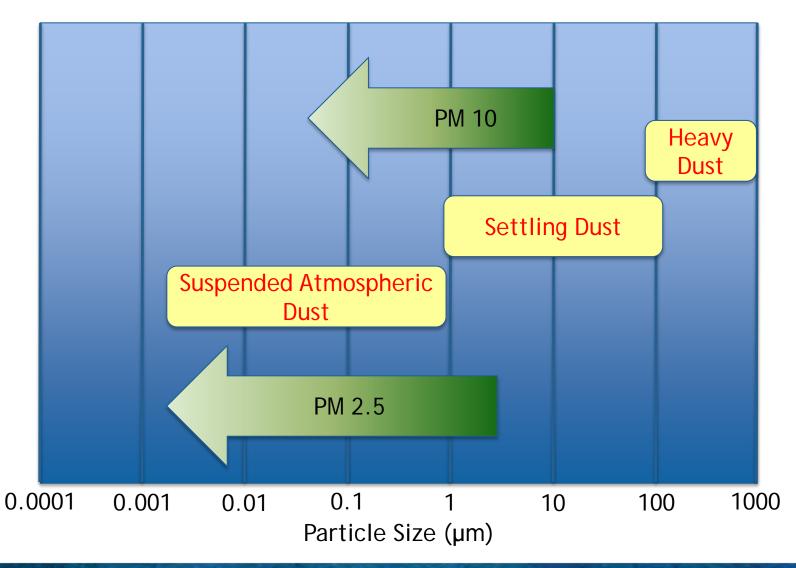
Impact of Loss of Particulate Matter from Unpaved Roads

- Degradation of road surface
- Driver safety
- Health and Quality of
 life

Soil Vocabulary

- Surface course: the top layer of the road that is directly driven on
- Aggregate: a mixture of different sized crushed rock that makes up the road surface
- Fines: the smaller (fine) pieces of crushed rock material that is part of the aggregate and makes up the road surface
- **Plasticity:** a measure of the quality of the binding particles in a clay soil; higher clay content of soil generally indicates higher plasticity
- Dust suppressant / dust palliative: substances applied to the surface of a road to control and reduce the generation of dust
- Chip seal/high float: a road type made up of one or more layers of asphalt and aggregate

Dust Definitions



- Loftable material: any material that can be placed in the air due to wind or vehicles. Usually <0.75mm
- Suspended material: Any material that stays in the air for an extended period of time. Usually <PM30
- Harmful to Health <PM10

How Small are These Particles We Are Working With?

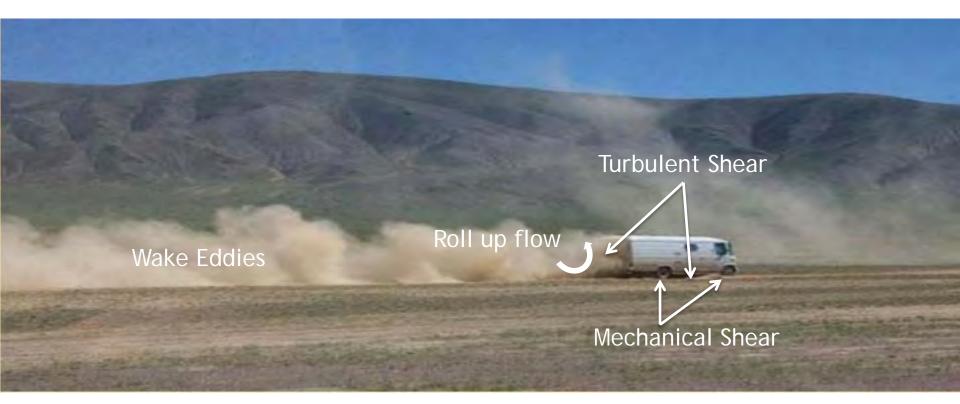
Really Small!

Health Issues

- Impacts children, elderly, and those with respiratory aliments the most
- Mortality rates increase 4.3% to 10% per 10 µgm⁻³ PM10
- PM2.5 may penetrate into the alveoli of the lungs reducing transfer of oxygen
- 1 micron may enter the bloodstream

Prioritize Areas for Dust Suppression

- Roads that are used the most
- Roads near places where people congregate (school, community hall, store, clinic, etc.)
- Roads outside of homes where individuals with respiratory issues live (young, elderly)
- Roads close to environmentally sensitive areas
- Roads near subsistence and food preparation areas



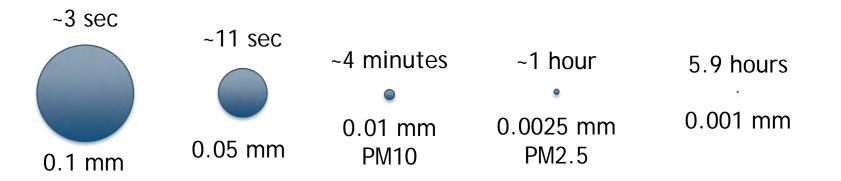
What Causes This?

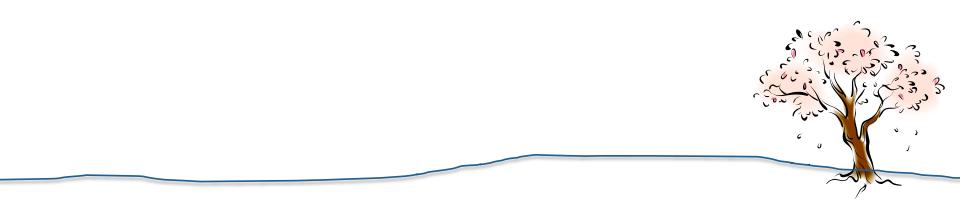
We Need a Mechanical Means of Lofting Particles into The Air

Moving Dust

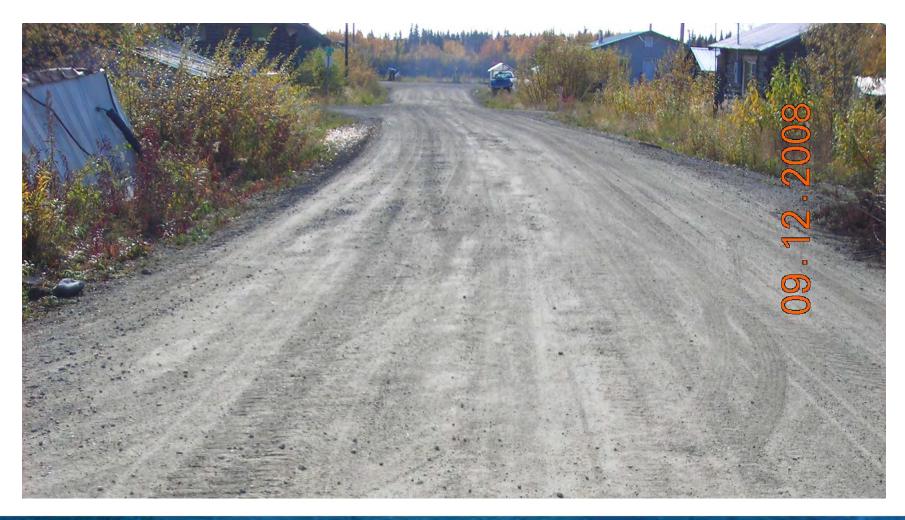
Advective Transport

Turbulent Diffusion

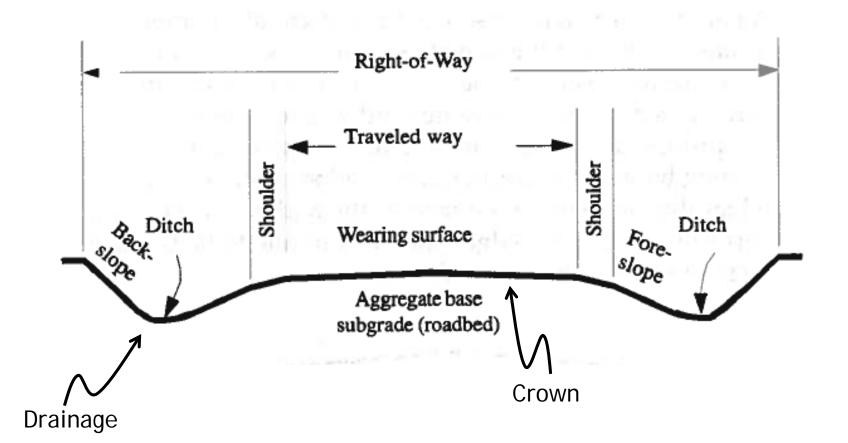

Settling


Mechanical and Convective Lofting

Settling time from a 2m loft



Methods to Manage Dust

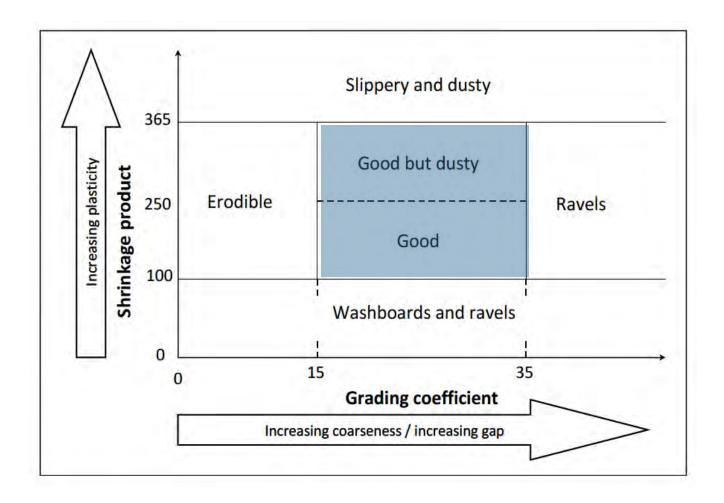


Good Dust Management Starts with a Good Road

Control Dust through Proper Design and Construction

Suggested Dust Management Approaches

Based on Rainfall	Suggested Dust Management Level		Based on Road Usage
12-20 dusty days (May-Sept)	Level 1: Institutional Controls (i.e. changes to driving behavior)		< 25 vehicles/day
21-30 dusty days (May-Sept)	Level 2: Institutional Controls + Road Watering		25-75 vehicles/day
31-50 dusty days (May-Sept)	Level 3: Institutional Controls + Chemical Stabilization (i.e. palliatives)		75-500 vehicles/day
51-61 dusty days (May-Sept) Level 4: Aggregate Stabilization	Level 4. Accurace Chabilization	(ex. chip seals)	500-1,500 vehicles/day
		(ex. pavement)	> 1,500 vehicles/day


Proper Fines is Critical

million

Proper fines content (passing the #200 sieve) is between 8 and 15% for untreated roads.

Using the Right Building Material is Critical

Too Many Fines Causes Muddy Roads

Float

Too Few Fines

F

Aggregate With No Fines	Aggregate With Sufficient Fines For Maximum Density Aggregate With Gr		
Grain-to-grain contact	Grain-to-grain contact with increased resistance against deformation	Grain-to-grain contact destroyed, aggregate "floating" In soil	
Variable density	Increased to maximum density	Decreased density	
Pervious	Low permeability	Low permeability	
Non-frost susceptible	Frost susceptible	Frost susceptible	
High stability if confined, low if unconfined	Relatively high stability in confined or unconfined conditions	Low stability and low strength	
Not affected by adverse water conditions	Not greatly affected by adverse water conditions	Greatly affected by adverse water conditions	
Difficult to compact	Moderately difficult to compact	Not difficult to compact	
Ravels easily	Good road performance	Dusts easily	

Keller 2014 RDI Conference

Proper Crown is Critical

• Should be between 4% and 5%

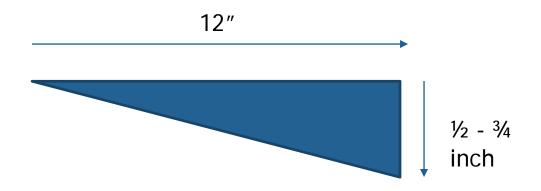
A Good Crown is Critical

• Too Flat Causes ponding

A Good Crown is Critical

Too Steep Causes Erosion

Courtesy of Dave Jones


Commercial Slope Meter

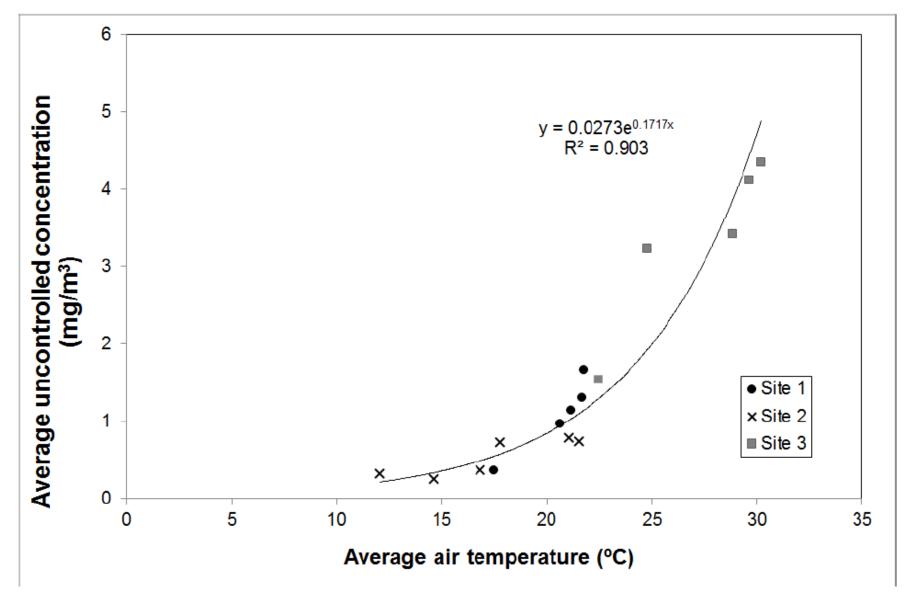
Measuring Crown

Material feathered to eliminate water ponding

Gap under blade indicates crown

Blade rolled forward to feather material

ATERML

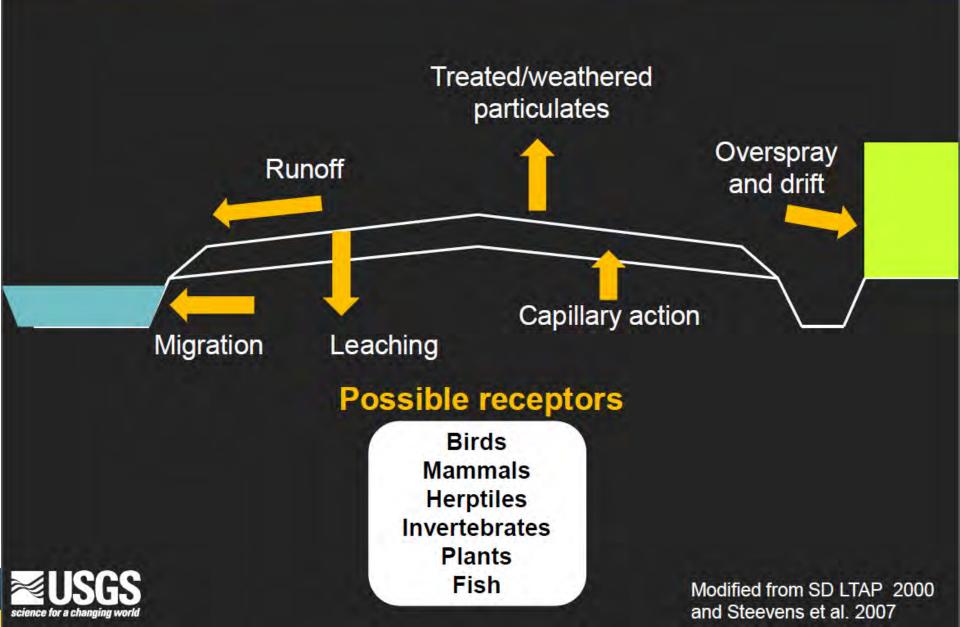

Limiting Fugitive Dust by Limiting Speed

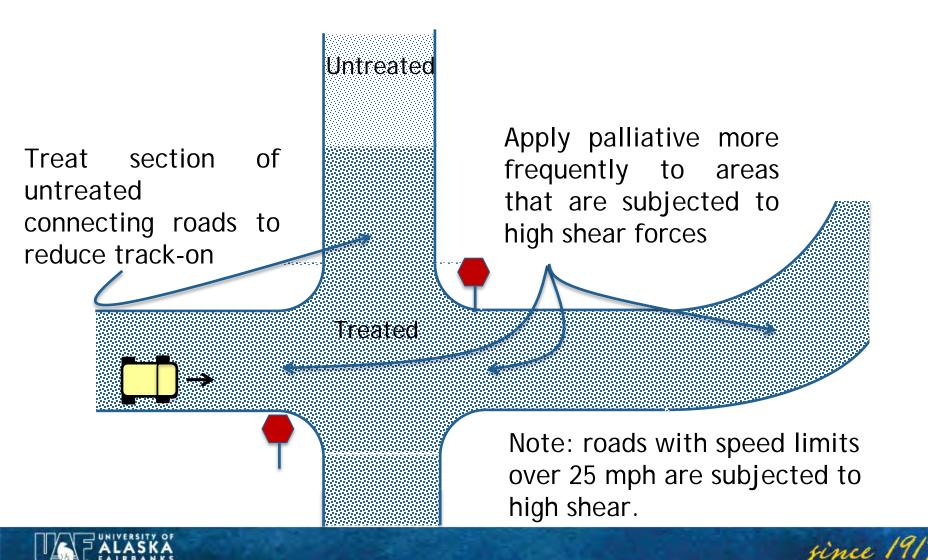
J. Cox 2014 RDI Conference

Types of Dust Suppressants

- > 250 on the market!
 - Water
 - Water-attracting salts: calcium chloride, magnesium chloride, sodium chloride
 - Organic non-bituminous binders: lignosulfonates, tall oil, pine tar
 - Synthetic oils: proprietary formulations
 - Electrical-chemical stabilizers: *enzymes*, *sulfonated oils*, *ionic*
 - Bitumen asphalt and tar: cutback asphalts, emulsified asphalts
 - Synthetic polymer emulsions: polyvinyl acetate, vinyl acrylic

General Considerations for Dust Suppressants


- Plan, assess, prioritize, budget
- Start with a good base road
- Consider track on / track off
- Chemical Palliatives
 - Requires periodic reapplication
 - Consider recompacting every few weeks
 - Wear and abrasion is minimized with good driving habits
- Pavements
 - Requires annual maintenance
 - Encourages increased use for skateboards, bicycles, and those in wheelchairs (Alaska villages)



Environmental endpoints—ecological pathways

Synthetic Fluid Considerations Product Application and Maintenance

1999 US Forest Service Guide

	Traffic Volumes, Average Daily Traffic				Surface Material								During	Traffic
	Light 100 to		o >250	Plasticity Index Fines (Passing 75µm, No. 200, Sieve)						1.1	1.1			
Dust Palliative		Medium 100 to 250		<3	3-8	>8	<5	5-10	10-20	20-30	>30	Wet &/or Rainy	Damp to Dry	Dry (2)
Calcium Chloride	11	11	1	x	1	11	x	1	11	1	X (3)	X (3,4)	11	x
Magnesium Chloride	11	11	1	x	1	11	×	1	11	1	X (3)	X (3,4)	11	1
Petroleum	1	1	1	11	1	x	(5)	1	√ (6)	x	x	√ (3)	11	1
Lignin	11	11	1	x	1	۲۲ (6)	×	1	11	11	√ (3,6)	X (4)	11	11
Tall Oil	11	1	x	11	1	x	x	1	// (6)	√ (6)	x	1	11	11
Vegetable Oils	1	×	x	1	1	1	x	1	1	x	x	x	1	1
Electro-chemical	11	1	1	×	1	11	x	1	11	11	11	√ (3,4)	1	1
Synthetic Polymers	11	1	x	11	1	x	x	11	// (6)	x	x	1	11	11
Clay Additives (6)	11	1	x	11	11	1	11	1	1	x	x	X (3)	1	11

TALASKA

since 1917

Additive Selection Table Jones 2013

Additive	Traffic		1	Climate		Wearing Course Material									
Category/	Ave	rage Daily T	fraffic	Humid	lity/Storm I	Intensity		Plastic	ity Index		F		issing #200	[75 µm] Sieve	0
Sub-Category	<100	100-2501		Dry	Damp	Wet345	3	3-5	6-15	>15*7	3	5-10	11-20	21-307.8	>305,7,8
Water and Water plus St	arfactant							And the second second							
Water	Not cost effective as a long-term fines preservation strategy														
Water + surfactant	Not cost effective as a long-term fines preservation strategy														
Water absorbing								-							
Calcium chloride	1	1	7	50 ⁰	1	50	7	1	1	50	50	1	1	7	SD
Magnesium chloride	1	1	7	70	1	50	7	1	1	-50	50	7	1	7	50
Sodium chloride brine	1	7	50	50	7	50	50	1	1	SU	50	7	1	7	50
Organic Non-Petroleum															
Glycerin based	1	1	50	1	1	50	7	1	1	50	50	7	1	7	50
Lignosulfonate	1	1	7	1	1	50	7	1	1	50	50	7	1	1	7
Molasses/sugar	1	50	50	1	1	50	50	1	1	50	50	50	1	7	50
Plant oil	1	7	50	1	1	50	50	1	1	.50	50	7	1	1	50
Tall oil pitch resin	1	7	50	1	1	7	7	1	1	50	50	7	1	1	50
Organic Petroleum					A										
Asphalt emulsion	1	7	50	1	1	1	7	1	72	50	7	1	1	50	50
Base oil	1	1	7	1	1	7	7	1	1	-50	50	7	1	1	7
Petroleum resin	1	1	50	1	1	7	7	1	1	50	7	7	1	7	50
Synthetic fluid	1	1	7	1	1	7	7	1	1	50	50	7	1	1	7
Synthetic fluid + binder	1	1	7	1	1	7	7	1	1	50	7	-1-	1	1	7
Synthetic Polymer Emul	sion														
Synthetic polymer ²	1	1	50	1	1	7	7	1	1	- 56	50	1	1	7	50
Conc. Liquid Stabilizer		Sector Street													
Conc. Liquid Stabilizer	7	-50	50	7	7	7	50	50	50	7	50	50	7	7	T
Clay Additive								-							
Bentonite	1	1	1	1	1	7	1	7	50	50	1	1	1	50	50

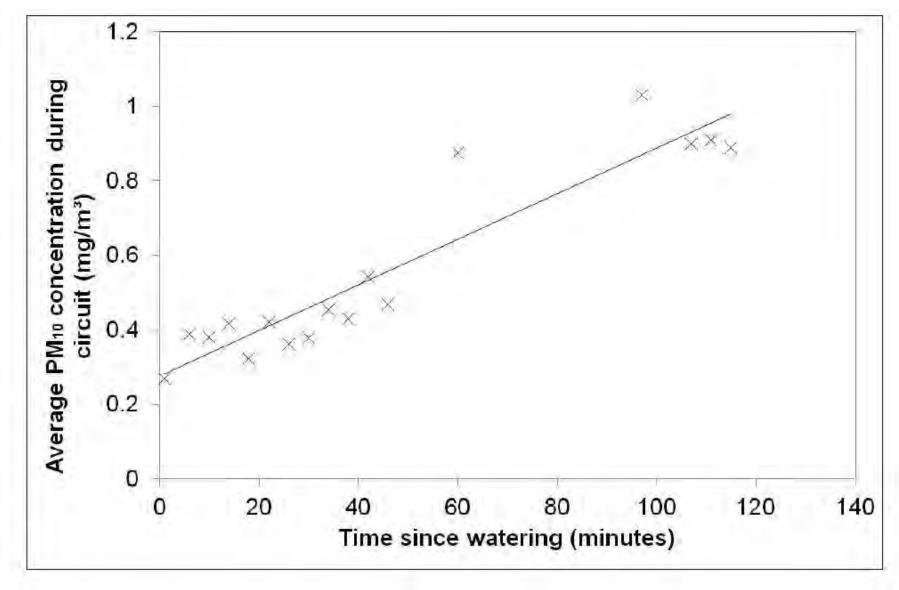
Additive	% trucks Geometry		try	Rel. Life	fe Key to Colors and Explanation Notes in Selection Charts						
Category/	>101		Sharp	Cycle	1 No significant influence on performance						
Sub-Category		Grades ^{4,6} (urves15	Cost	7 Some influence on performance						
Water	Not cost effective a	s a long-term fines	preservation strategy		50 Significant influence on performance						
Water + surfactant	Not cost effective a	s a long term fines :	preservation strategy	e	1 Cars and trucks at higher speeds may break surface crust and accelerate washboarding and raveling, if so						
Calcium chloride	1	7	7	1	more frequent rejuvenation will be required						
Magnesium chloride	1	7	7	1	2 More than 20 days with less than 40% relative humidity						
Sodium chloride brine	1	7	7	2	3 High intensity storms						
Glycerm based	1	7	7	1	4 Likely to leach out and/or down into lower layers during storm events						
Lignosulfonate	1	7	7	1	5 Soaked California Bearing Ratio (CBR) and abrasion resistance must be checked / increased with						
Molasses/sugar	7	7	7	3/2	increasing number of trucks to ensure all-weather passability						
Plant oil	7	7	7	1	6 Materials have little or no effective binder content and are prone to washboarding and raveling.						
Tall oil pitch resin	1	7	7	213	Treatments may leach down into road structure						
Asphalt emulsion	Ţ	1	7	213	7 May become slippery when wet 9 High from earlier to be affective state to be affective						
Base oil	I	in the second	I	1	8 High fines content may require higher application rates to be effective 9 Requires a minimum humidity level to perform effectively						
Petroleum resin	1	1	T	213	10 May leach down into layer, but dry back of the material plus a light water spray / rejuvenation will return						
Synthetic fluid	1	t	1	213	it to surface						
Synthetic fluid + binder	1	1	1	213	11 Generally not suitable as a spray-on application. A "skin" can form on the surface which is damaged by						
Synthetic polymer	7	7	7	213	traffic						
Conc. Liquid Stabilizer	1	1	1	1	12 Requires frequent rejuvenation						
Bentonite	7	7	1	1	13 Relatively high initial product cost price, but life-cycle cost could be lower than other treatments						

since 1917

Selection Based on Performance

	Traffic	Climate	PI	Fines	JUNCS Z	010
Treatment	125	Damp	7	8	Perf	Rank
Water	50	50	50	50	200	NS
Calcium chloride	1	1	1	7	10	2
Mag. chloride	1	1	1	7	10	2
Sodium chloride	7	7	1	7	22	4
Glycerin based	1	1	1	7	10	2
Lignosulfonate	1	1	1	7	10	2
Molasses/sugar	50	1	1	50	102	NS
Plant oil	7	1	1	7	16	3
Tall oil	7	1	1	7	16	3
Asphalt emulsion	7	1	7	1	16	3
Base/mineral oil	1	1	1	7	10	2
Petroleum resin	1	1	1	7	10	2
Synthetic fluid	1	1	1	7	10	2
Synthetic polymer	1	1	1	1	4	1
Conc. Liquid Stabilizer	50	7	50	50	157	NS
Bentonite	1	1	50	1	53	NS

Types of Dust Suppressants


> 250 on the market!

- Water
- Water-attracting salts: calcium chloride, magnesium chloride, sodium chloride
- Organic non-bituminous binders: lignosulfonates, tall oil, pine tar
- Synthetic oils: proprietary formulations
- Electrical-chemical stabilizers: *enzymes*, *sulfonated oils*, *ionic*
- Bitumen asphalt and tar: cutback asphalts, emulsified asphalts
- Synthetic polymer emulsions: polyvinyl acetate, vinyl acrylic

J. Cox 2014 RDI Conference

Types of Dust Suppressants

- > 250 on the market!
 - Water
 - Water-attracting salts: calcium chloride, magnesium chloride, sodium chloride
 - Organic non-bituminous binders: lignosulfonates, tall oil, pine tar
 - Synthetic oils: proprietary formulations
 - Electrical-chemical stabilizers: enzymes, sulfonated oils, ionic
 - Bitumen asphalt and tar: cutback asphalts, emulsified asphalts
 - Synthetic polymer emulsions: polyvinyl acetate, vinyl acrylic

What is Calcium Chloride

Calcium Chloride is a salt similar to sodium chloride but tends to be stronger.

It is used as a deicing/anti-icing chemical as well as a dust palliative.

This Photo by Unknown Author is licensed under CC BY-NC-ND

How does it work as a palliative?

• Calcium chloride has a strong affinity for water. It will attach to moisture in the air or soil and hold it.

How does it work as a palliative?

 Calcium chloride has a strong affinity for water. It will attach to moisture in the air or soil and hold it.

CaCl₂ Characteristics

- Most commonly used
- Requires high fines (10 14%)
- Ineffective when RH falls below 35%
- Can be slippery during and after a rainfall
- Has a bitter taste
- A mucus irritant
- Can impact water quality

Why use Calcium Chloride

- It is the second most common palliative besides water.
- Except for water, it is the most cost-effective palliative.
- It requires minimal equipment to put down.
- Workforce development is minimal.
- It has proven to be safe when used as a palliative.

Why use Calcium Chloride

- It is the second most common palliative besides water.
- Except for water, it is the most cost-effective palliative.
- It requires minimal equipment to put down.
- Workforce development is minimal.
- It has proven to be safe when used as a palliative.

Ideal Road and Materials

- Define project limits
- Establish drainage
- If necessary, refresh surface course
 - Ideally ¾ dense graded material with 8 to 15% passing 200 sieve.
 - Ideally a minimum of 4" thick for grading
- Establish grade
- If you have silt or clean sand, calcium chloride is not a good choice.

Application of Calcium Chloride

- Topically Applied
 - Liquid
 - Solid
- Mixed into Soil
 - Liquid
 - Solid
- Application rate
 - 1 to 1.5% by weight

Required Equipment

- Applied as a solid
 - Grader
 - Spreader
 - Water truck
 - Compactor (optional)
- Applied as a Liquid
 - Grader
 - Water Truck
 - Compactor (optional)
 - Forklift (optional)

Steps to Apply Solid Topical Application

- Shape Road
- Compact
- Loosen upper 2 inches
- Add Salt
- Water
- Compact

Steps to mix (2 to 4 inches)

- Windrow to centerline
- Add salt to windrow
- Blend
- Shape
- Water
- Compact

Steps to Topically Applied Brine

- Shape Road
- Apply Brine
- Compact

Steps to Blending Brine (2 to 4 inches)

- Loosen roadway to desired depth
- Apply Brine
- Blend
- Shape
- Compact

Worker Safety

- Provide coveralls, gloves, safety vests and safety glasses to all workers. Calcium chloride is a strong irritant.
- Provide plenty of drinking water.
- Provide showers at the end of the work shift.
- Consider providing hand creams and body lotions.

Equipment

Prevent corrosion by washing equipment at the end of every shift.

Thoroughly rinse brine tanks

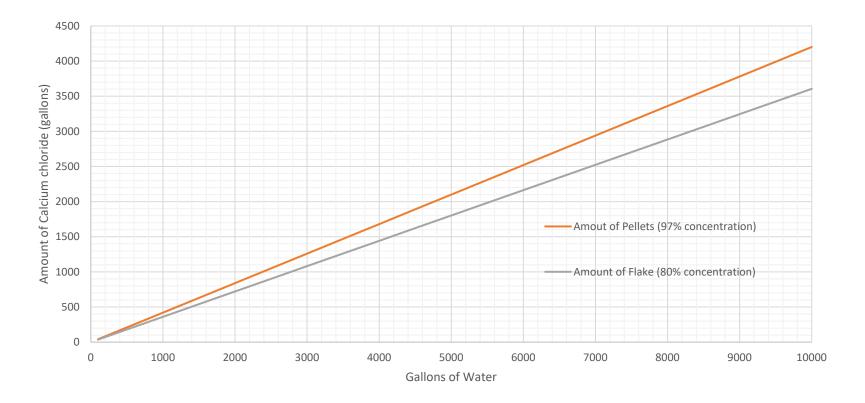
Lubricate more frequently.

How much calcium chloride Should I use?

The target is 1% to 1.5% by weight of treated soil.

Assuming the surface course weighs 3,500 lbs/cy you would use

Between 35 lbs and 53 lbs, (3,500 x .01), calcium chloride per yard of surfacing material.


This Photo by Unknown Author is licensed under CC BY-SA-N

Road Dust Control with Calcium Chloride Topically Applied

Equivalent Rates of Application

Flake	Pellet	Liquid (Concentrations)				
		38%	35%	32%		
lbs./sq.yd.	lbs./sq.yd.		gal./sq.yd.			
0.5	0.41	0.09	0.1	0.11		
0.75	0.61	1.13	0.15	0.16		
1.00	0.82	0.17	0.19	0.22		
1.25	1.02	0.22	0.24	0.27		
1.50	1.23	0.26	0.29	0.33		

Amount of Calcium Chloride (35% solution)

Parting thoughts

- There are several ways to apply calcium chloride. Choose the way that fits the equipment you have.
- Plan where you are going to apply calcium chloride carefully. Generally, focus on the higher trafficked areas.
- Plan early. Order early.
- Order bags if you can't handle super sacks.
- Keep the product dry.
- Protect your people and your equipment.

Types of Dust Suppressants

- > 250 on the market!
 - Water
 - Water-attracting salts: calcium chloride, magnesium chloride, sodium chloride
 - Organic non-bituminous binders: lignosulfonates, tall oil, pine tar
 - Synthetic oils: proprietary formulations
 - Electrical-chemical stabilizers: enzymes, sulfonated oils, ionic
 - Bitumen asphalt and tar: cutback asphalts, emulsified asphalts
 - Synthetic polymer emulsions: polyvinyl acetate, vinyl acrylic

Synthetic Fluids

- Petroleum Products with all aromatics removed
- Meet all EPA/DEC toxicity requirements
- Naturally clear liquid but may have additives
- Non-corrosive
- Considerably more expensive than CaCl₂
- Liquid below -40 F

Applying Synthetic Fluid

101.000-101.000-001

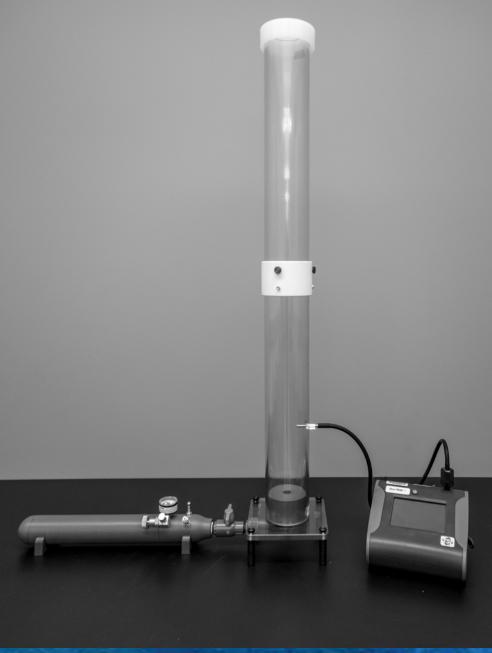
It has to be done right

It has to be done right

It has to be done right

Good Equipment is Not Expensive

Synthetic Fluid Considerations Product


- Types Be sure product has been tested and has a good reputation - do your homework!
- Best to have a product that can withstand storage down to -50°F.
- Application rates Too much wastes expensive product, too light results in poor performance. Determining the right rate requires testing.

Mini Dust Column used to test palliative

Application Rate

10

Application Rate sq.ft/gal	Avg t	Std. Dev.	% Reduction
30	3.243	1.898	92
40	6.243	2.788	85
50	8.045	3.298	81
60	9.791	3.664	77
Control	42.266	7.953	

Synthetic Fluid Considerations Product Application

Application use appropriate spraying equipment -<u>NO</u> <u>WATER</u> <u>TRUCKS!!</u>

Synthetic Fluid Considerations Product Application

Application may require multiple passes. Be patient!

Synthetic Fluid Considerations Product Maintenance

- Re-compact treated roads every few weeks.
- Protect your expensive treated road by controlling speed and aggressive driving.

Proper Fines is Critical

million

Proper fines content (passing the #200 sieve) is between 8 and 15% for untreated roads.

Off-the-shelf aerosol monitor

UAF-DUSTM Used for Monitoring Field Performance

Intake

The system is versatile

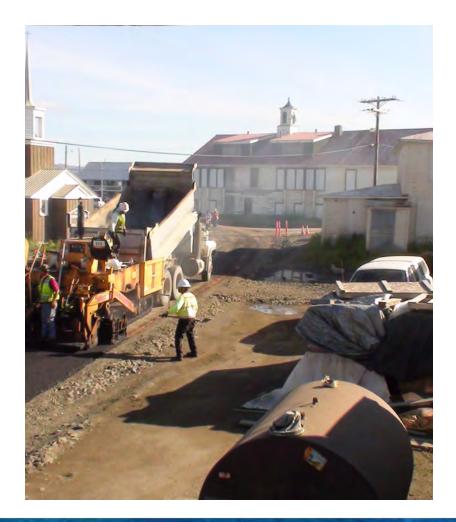
Reasons for Poor Performance

- Surface too sandy (low fines)
- Material too dense to allow penetration of the selected product
- Weather
- Too little product applied

http://AIDC.UAF.EDU/TTAP

-

Acknowledgements


- Funding
- AKDOT&PF
- AIDC (AUTC)
- Federal Highway Administration
- o ADEC
- Midwest Industrial Supply, Inc
- o Soil Works, Inc.

Part 2 Overview May 23, 2024

- Use of clay additives
- Polymer Stabilizers
- Chip Seals
- Recycled Asphalt
- Hot Asphalt Pavement

Questions?

Image courtesy of Subaru of America, Inc.

Available: http://www.subaru.com/enthusiasts/rally/article.html?uri=/rally/posts/08212012_085321/

160

BFGoodrich

Sīīi

FCARC

since 1917